NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity.
NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity.
El Qaidi S, Chen K, Halim A, Siukstaite L, Rueter C, Hurtado-Guerrero R, Clausen H, Hardwidge PR.
J Biol Chem. 2017 May 18. pii: jbc.M117.790675. doi: 10.1074/jbc.M117.790675.
Many Gram-negative bacterial pathogens use a syringe-like apparatus called a type III secretion system to inject virulence factors into host cells. Some of these effectors are enzymes that modify host proteins to subvert their normal functions. NleB is a glycosyltransferase that modifies host proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three NleB orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1, and SseK2 glycosylated the Fas-associated death domain protein (FADD). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, R197 and R200 and that these two residues were essential for GAPDH-mediated activation of tumor necrosis factor (TNF) Receptor-Associated Factor 2 (TRAF2) ubiquitination. These results provide evidence that members of this highly conserved family of bacterial virulence effectors target different host protein substrates and exhibit distinct cellular modes of action to suppress host responses.
Many Gram-negative bacterial pathogens use a syringe-like apparatus called a type III secretion system to inject virulence factors into host cells. Some of these effectors are enzymes that modify host proteins to subvert their normal functions. NleB is a glycosyltransferase that modifies host proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three NleB orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1, and SseK2 glycosylated the Fas-associated death domain protein (FADD). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, R197 and R200 and that these two residues were essential for GAPDH-mediated activation of tumor necrosis factor (TNF) Receptor-Associated Factor 2 (TRAF2) ubiquitination. These results provide evidence that members of this highly conserved family of bacterial virulence effectors target different host protein substrates and exhibit distinct cellular modes of action to suppress host responses.