Andreev reflection under high magnetic fields in ferromagnet-superconductor nanocontacts
PHYSICAL REVIEW B
We study the magnetic-field dependence of the conductance in planar ferromagnet-superconductor nanocontacts created with focused-electron/ion-beam techniques. From the fits of the differential conductance curves in high magnetic fields, we obtain the magnetic field dependences of the superconducting gap and the broadening parameter. Orbital depairing is found to be linear with magnetic field. We evaluate the magnetic field dependence of the quasiparticle density of states, and we compare it with the value obtained by scanning tunneling spectroscopy experiments.
We study the magnetic-field dependence of the conductance in planar ferromagnet-superconductor nanocontacts created with focused-electron/ion-beam techniques. From the fits of the differential conductance curves in high magnetic fields, we obtain the magnetic field dependences of the superconducting gap and the broadening parameter. Orbital depairing is found to be linear with magnetic field. We evaluate the magnetic field dependence of the quasiparticle density of states, and we compare it with the value obtained by scanning tunneling spectroscopy experiments.